Gene expressions specifically detected in motor neurons (dynactin 1, early growth response 3, acetyl-CoA transporter, death receptor 5, and cyclin C) differentially correlate to pathologic markers in sporadic amyotrophic lateral sclerosis.
نویسندگان
چکیده
In a differential gene expression profile, we showed previously that dynactin 1 (DCTN1), early growth response 3 (EGR3), acetyl-CoA transporter (ACATN), death receptor 5 (DR5), and cyclin C (CCNC) were prominently up- or downregulated in motor neurons of sporadic amyotrophic lateral sclerosis (ALS). In the present study, we examined the correlation between the expression levels of these genes and the levels of pathologic markers for motor neuron degeneration (i.e. cytoplasmic accumulation of phosphorylated neurofilament H [pNF-H] and ubiquitylated protein) and the numbers of residual motor neurons in 20 autopsies of patients with sporadic ALS. DCTN1 and EGR3 were widely downregulated, and the changes in gene expression were correlated to the number of residual motor neurons. In particular, DCTN1 was markedly downregulated in most residual motor neurons before the accumulation of pNF-H, even in cases with well-preserved motor neuron populations. ACATN, DR5, and CCNC were upregulated in subpopulations of residual motor neurons, and their expression levels were well correlated with the levels of pNF-H accumulation and the number of residual motor neurons. The expressions of DCTN1, EGR3, ACATN, and DR5 were all markedly altered before ubiquitylated protein accumulation. DCTN1 downregulation appears to be an early event before the appearance of neurodegeneration markers, whereas upregulations of DR5 and CCNC are relatively later phenomena associated with pathologic markers and leading to neuronal death. The sequence of motor neuron-specific gene expression changes in sporadic ALS can be beneficial information in developing appropriate therapeutic strategies for neurodegeneration.
منابع مشابه
Disruption of Axonal Transport in Motor Neuron Diseases
Motor neurons typically have very long axons, and fine-tuning axonal transport is crucial for their survival. The obstruction of axonal transport is gaining attention as a cause of neuronal dysfunction in a variety of neurodegenerative motor neuron diseases. Depletions in dynein and dynactin-1, motor molecules regulating axonal trafficking, disrupt axonal transport in flies, and mutations in th...
متن کاملMotor neuron disease occurring in a mutant dynactin mouse model is characterized by defects in vesicular trafficking.
Amyotrophic lateral sclerosis (ALS), a fatal and progressive neurodegenerative disorder characterized by weakness, muscle atrophy, and spasticity, is the most common adult-onset motor neuron disease. Although the majority of ALS cases are sporadic, approximately 5-10% are familial, including those linked to mutations in SOD1 (Cu/Zn superoxide dismutase). Missense mutations in a dynactin gene (D...
متن کاملdnc-1/dynactin 1 Knockdown Disrupts Transport of Autophagosomes and Induces Motor Neuron Degeneration
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. We previously showed that the expression of dynactin 1, an axon motor protein regulating retrograde transport, is markedly reduced in spinal motor neurons of sporadic ALS patients, although the mechanisms by which decreased dynactin 1 levels cause neurodegeneration ha...
متن کاملAnalysis of Novel NEFL mRNA Targeting microRNAs in Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by progressive motor neuron degeneration and neurofilament aggregate formation. Spinal motor neurons in ALS also show a selective suppression in the levels of low molecular weight neurofilament (NEFL) mRNA. We have been interested in investigating the role of microRNAs (miRNAs) in NEFL transcript stability. MiRNAs are small, 2...
متن کاملAn Iranian familial amyotrophic lateral sclerosis pedigree with p.Val48Phe causing mutation in SOD1: a genetic and clinical report
Objective(s): Amyotrophic lateral sclerosis (ALS), a fatal progressive neurodegenerative disorder, is the most common motor neuron disease in European populations. Approximately 10% of ALS cases are familial (FALS) and the other patients are considered as sporadic ALS (SALS). Among many ALS causing genes that have been identified, mutations in SOD1 and C9orf72 are the most common genetic causes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuropathology and experimental neurology
دوره 66 7 شماره
صفحات -
تاریخ انتشار 2007